The Occipital Place Area Is Recruited for Echo-Acoustically Guided Navigation in Blind Human Echolocators

Author:

Norman Liam J.,Thaler Lore

Abstract

In the investigation of the brain areas involved in human spatial navigation, the traditional focus has been on visually guided navigation in sighted people. Consequently, it is unclear whether the involved areas also support navigational abilities in other modalities. We explored this possibility by testing whether the occipital place area (OPA), a region associated with visual boundary-based navigation in sighted people, has a similar role in echo-acoustically guided navigation in blind human echolocators. We used fMRI to measure brain activity in 6 blind echolocation experts (EEs; five males, one female), 12 blind controls (BCs; six males, six females), and 14 sighted controls (SCs; eight males, six females) as they listened to prerecorded echolocation sounds that conveyed either a route taken through one of three maze environments, a scrambled (i.e., spatiotemporally incoherent) control sound, or a no-echo control sound. We found significantly greater activity in the OPA of EEs, but not the control groups, when they listened to the coherent route sounds relative to the scrambled sounds. This provides evidence that the OPA of the human navigation brain network is not strictly tied to the visual modality but can be recruited for nonvisual navigation. We also found that EEs, but not BCs or SCs, recruited early visual cortex for processing of echo acoustic information. This is consistent with the recent notion that the human brain is organized flexibly by task rather than by specific modalities.SIGNIFICANCE STATEMENTThere has been much research on the brain areas involved in visually guided navigation, but we do not know whether the same or different brain regions are involved when blind people use a sense other than vision to navigate. In this study, we show that one part of the brain (occipital place area) known to play a specific role in visually guided navigation is also active in blind human echolocators when they use reflected sound to navigate their environment. This finding opens up new ways of understanding how people navigate, and informs our ability to provide rehabilitative support to people with vision loss.

Funder

UKRI | Biotechnology and Biological Sciences Research Council

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3