Differential expression analysis identifies candidate synaptogenic molecules for wiring direction-selective circuits in the retina

Author:

Tworig J.,Morrie R.,Bistrong K.,Somaiya R. D.,Hsu S.,Liang J.,Cornejo K.,Feller M. B.

Abstract

An organizational feature of neural circuits is the specificity of synaptic connections. A striking example is the direction-selective (DS) circuit of the retina. There are multiple subtypes of DS retinal ganglion cells (DSGCs) that prefer motion along one of 4 preferred directions. This computation is mediated by selective wiring of a single inhibitory interneuron, the starburst amacrine cell (SAC), with each DSGC subtype preferentially receiving input from a subset of SAC processes. We hypothesize that the molecular basis of this wiring is mediated in part by unique expression profiles of DSGC subtypes. To test this, we first performed paired recordings from isolated mouse retina of both sexes to determine that postnatal day 10 (P10) represents the age at which asymmetric synapses form. Second, we performed RNA-sequencing and differential expression analysis on isolated P10 ON-OFF DSGCs tuned for either nasal or ventral motion and identified candidates which may promote direction-specific wiring. We then used a conditional knockout strategy to test the role of one candidate, the secreted synaptic organizer cerebellin-4 (Cbln4), in the development of DS tuning. Using two-photon calcium imaging, we observed a small deficit in directional tuning among ventral-preferring DSGCs lacking Cbln4, though whole-cell voltage clamp recordings did not identify a significant change in inhibitory inputs. This suggests that Cbln4 does not function primarily via a cell-autonomous mechanism to instruct wiring of DS circuits. Nevertheless, our transcriptomic analysis identified unique candidate factors for gaining insights into the molecular mechanisms that instruct wiring specificity in the DS circuit.Significance StatementBy performing mRNA transcriptome analysis on three populations of direction-selective ganglion cells - two preferring horizontal motion and one preferring vertical motion - we identified differentially expressed candidate molecules potentially involved in cell subtype-specific synaptogenesis within this circuit. We tested the role of one differentially expressed candidate, Cbln4, enriched in ventral-preferring DSGCs. Using a targeted knockout approach, the deletion of Cbln4 led to a small reduction in direction-selective tuning while maintaining dendritic morphology and normal strength and asymmetry of inhibitory synaptic transmission. Overall, we have shown that this approach can be used to identify interesting candidate molecules, and future functional studies are required to reveal the mechanisms by which these candidates influence synaptic wiring within specific circuits.

Funder

HHS | NIH | National Eye Institute

National Science Foundation

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3