Acetylcholine engages distinct amygdala microcircuits to gate internal theta rhythm

Author:

Bratsch-Prince Joshua X.,Warren James W.,Jones Grace C.,McDonald Alexander J.,Mott David D.

Abstract

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM-CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over cortex or hippocampus, suggesting preferential activation of BLA during high ACh states. These data reveal a SOM-CCK IN circuit in BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.Significance statementWhile ACh plays a critical role in establishing network states enabling emotional behaviors, the mechanisms by which ACh acts on circuits involved in emotional processes remain unclear. The BLA receives dense cholinergic projections and plays a key role in emotional behaviors. Using electrophysiology recordings in mouse brain slices, we show that cholinergic stimuli readily induce theta oscillations in the BLA through CCK, but not PV INs. These oscillations are gated by SOM INs, establishing a CCK-SOM microcircuit in the generation of theta oscillations. Further, oscillatory activity is more readily induced in the BLA compared to hippocampus or cortex. These results reveal a detailed circuit-specific mechanism for ACh modulation of BLA theta oscillations that play a critical role in emotional processing.

Funder

NIH - NIMH

University of South Carolina VP for Research

Publisher

Society for Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3