Maximal Fusion Capacity and Efficient Replenishment of the Dense Core Vesicle Pool in Hippocampal Neurons

Author:

Baginska Urszula,Moro Alessandro,Toonen Ruud F.,Verhage Matthijs

Abstract

Neuropeptides and neurotrophins, stored in dense core vesicles (DCVs), are together the largest currently known group of chemical signals in the brain. Exocytosis of DCVs requires high-frequency or patterned stimulation, but the determinants to reach maximal fusion capacity and for efficient replenishment of released DCVs are unknown. Here, we systematically studied fusion of DCV with single vesicle resolution on different stimulation patterns in mammalian CNS neurons. We show that tetanic stimulation trains of 50-Hz action potential (AP) bursts maximized DCV fusion, with significantly fewer fusion event during later bursts of the train. This difference was omitted by introduction of interburst intervals but did not increase total DCV fusion. Interburst intervals as short as 5 s were sufficient to restore the fusion capacity. Theta burst stimulation (TBS) triggered less DCV fusion than tetanic stimulation, but a similar fusion efficiency per AP. Prepulse stimulation did not alter this. However, low-frequency stimulation (4 Hz) intermitted with fast ripple stimulation (200 APs at 200 Hz) produced substantial DCV fusion, albeit not as much as tetanic stimulation. Finally, individual fusion events had longer durations with more intense stimulation. These data indicate that trains of 50-Hz AP stimulation patterns triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.SIGNIFICANCE STATEMENTNeuropeptides and neurotrophins modulate multiple regulatory functions of human body like reproduction, food intake or mood. They are packed into dense core vesicles (DCVs) that undergo calcium and action potential (AP) fusion with the plasma membrane. In order to study the fusion of DCVsin vitro, techniques like perfusion with buffer containing high concentration of potassium or electric field stimulation are needed to trigger the exocytosis of DCVs. Here, we studied the relationship between DCVs fusion properties and different electric field stimulation patterns. We used six different stimulation patterns and showed that trains of 50-Hz action potential bursts triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.

Funder

European Research Council Advanced grant of the European Union

Comorbidity and Synapse Biology in Clinically Overlapping Psychiatric Disorders, Horizon 2020 Program of the European Union under RIA grant agreement

JPND Neuron Cofound ERA-Net SNAREopathy

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3