Predicting Atrophy of the Cochlear Stria Vascularis from the Shape of the Threshold Audiogram

Author:

Kaur CharanjeetORCID,Wu Pei-Zhe,O'Malley Jennifer T.,Liberman M. CharlesORCID

Abstract

Several lines of evidence have suggested that steeply sloping audiometric losses are caused by hair cell degeneration, while flat audiometric losses are caused by strial atrophy, but this concept has never been rigorously tested in human specimens. Here, we systematically compare audiograms and cochlear histopathology in 160 human cases from the archival collection of celloidin-embedded temporal bones at the Massachusetts Eye and Ear. The dataset included 106 cases from a prior study of normal-aging ears, and an additional 54 cases selected by combing the database for flat audiograms. Audiogram shapes were classified algorithmically into five groups according to the relation between flatness (i.e., SD of hearing levels across all frequencies) and low-frequency pure-tone average (i.e., mean at 0.25, 0.5, and 1.0 kHz). Outer and inner hair cell losses, neural degeneration, and strial atrophy were all quantified as a function of cochlear location in each case. Results showed that strial atrophy was worse in the apical than the basal half of the cochlea and was worse in females than in males. The degree of strial atrophy was uncorrelated with audiogram flatness. Apical atrophy was correlated with low-frequency thresholds and basal atrophy with high-frequency thresholds, and the former correlation was higher. However, a multivariable regression with all histopathological measures as predictors and audiometric thresholds as the outcome showed that strial atrophy was a significant predictor of threshold shift only in the low-frequency region, and, even there, the contribution of outer hair cell damage was larger.SIGNIFICANCE STATEMENTCochlear pathology can only be assessed postmortem; thus, human cochlear histopathology is critical to our understanding of the mechanisms of hearing loss. Dogma holds that relative damage to sensory cells, which transduce mechanical vibration into electrical signals, versus the stria vascularis, the cellular battery that powers transduction, can be inferred by the shape of the audiogram, that is, down-sloping (hair cell damage) versus flat (strial atrophy). Here we quantified hair cell and strial atrophy in 160 human specimens to show that it is the degree of low-frequency hearing loss, rather than the audiogram slope, that predicts strial atrophy. Results are critical to the design of clinical trials for hearing-loss therapeutics, as current drugs target only hair cell, not strial, regeneration.

Funder

HHS | NIH | National Institute on Deafness and Other Communication Disorders

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3