Heterogeneity in Slow Synaptic Transmission Diversifies Purkinje Cell Timing

Author:

Thomas Riya ElizabethORCID,Mudlaff FranziskaORCID,Schweers KyraORCID,Farmer William ToddORCID,Suvrathan AparnaORCID

Abstract

The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear. Here, we describe a previously unappreciated form of synaptic heterogeneity at parallel fiber synapses to Purkinje cells in the mouse cerebellum (both sexes). In contrast to uniform fast synaptic transmission, we found that the properties of slow synaptic transmission varied by up to threefold across different lobules of the mouse cerebellum, resulting in surprising heterogeneity. Depending on the location of a Purkinje cell, the time of peak of slow synaptic currents varied by hundreds of milliseconds. The duration and decay time of these currents also spanned hundreds of milliseconds, based on lobule. We found that, as a consequence of the heterogeneous synaptic dynamics, the same brief input stimulus was transformed into prolonged firing patterns over a range of timescales that depended on Purkinje cell location.

Funder

Canadian Government | Canadian Institutes of Health Research

FRQ | Fonds de Recherche du Québec - Santé

Canada First Research Excellence Fund- Healthy Brains for Healthy Lives

Research Institute of the McGill University Health Centre

RIMUHC Studentship

Integrated Program in Neuroscience Studentship

Canada Foundation for Innovation

Canadian Government | Natural Sciences and Engineering Research Council of Canada

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3