Early Action Error Processing Is Due to Domain-General Surprise, Whereas Later Processing Is Error Specific

Author:

Choo YoojeongORCID,Mather AlecORCID,Wessel Jan R.ORCID

Abstract

The ability to adapt behavior after erroneous actions is one of the key aspects of cognitive control. Error commission typically causes people to slow down their subsequent actions [post-error slowing (PES)]. Recent work has challenged the notion that PES reflects adaptive, controlled processing and instead suggests that it is a side effect of the surprising nature of errors. Indeed, human neuroimaging suggests that the brain networks involved in processing errors overlap with those processing error-unrelated surprise, calling into question whether there is a specific system for error processing in the brain at all. In the current study, we used EEG decoding and a novel behavioral paradigm to test whether there are indeed unique, error-specific processes that contribute to PES beyond domain-general surprise. Across two experiments in male and female humans (N= 76), we found that both errors and error-unrelated surprise were followed by slower responses when response–stimulus intervals were short. Furthermore, the early neural processes following error-specific and domain-general surprise showed significant cross-decoding. However, at longer intervals, which provided additional processing time, only errors were still followed by post-trial slowing. Furthermore, this error-specific PES effect was reflected in sustained neural activity that could be decoded from that associated with domain-general surprise, with the strongest contributions found at lateral frontal, occipital, and sensorimotor scalp sites. These findings suggest that errors and surprise initially share common processes, but that after additional processing time, unique, genuinely error-specific processes take over and contribute to behavioral adaptation.SIGNIFICANCE STATEMENTHumans typically slow their actions after errors (PES). Some suggest that PES is a side effect of the unexpected, surprising nature of errors, challenging the notion of a genuine error processing system in the human brain. Here, we used multivariate EEG decoding to identify behavioral and neural processes uniquely related to error processing. Action slowing occurred following both action errors and error-unrelated surprise when time to prepare the next response was short. However, when there was more time to react, only errors were followed by slowing, further reflected in sustained neural activity. This suggests that errors and surprise initially share common processing, but that after additional time, error-specific, adaptive processes take over.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3