Spatiotemporal Neural Network for Sublexical Information Processing: An Intracranial SEEG Study
-
Published:2024-08-30
Issue:
Volume:
Page:e0717242024
-
ISSN:0270-6474
-
Container-title:The Journal of Neuroscience
-
language:en
-
Short-container-title:J. Neurosci.
Author:
Zhao Chunyu,Liu Yi,Zeng Jiahong,Luo Xiangqi,Liu Yuxin,Zhang Yumei,Shi Gaofeng,Guan Yuguang,Han Zaizhu
Abstract
Words offer a unique opportunity to separate the processing mechanisms of object subcomponents from those of the whole object, because the phonological or semantic information provided by the word subcomponents (i.e., sublexical information) can conflict with that provided by the whole word (i.e., lexical information). Previous studies have revealed some of the specific brain regions and temporal information involved in sublexical information processing. However, a comprehensive spatiotemporal neural network for sublexical processing remains to be fully elucidated due to the low temporal or spatial resolutions of previous neuroimaging studies. In this study, we recorded stereoelectroencephalography (SEEG) signals with high spatial and temporal resolutions from a large sample of 39 epilepsy patients (both sexes) during a Chinese character oral reading task. We explored the activated brain regions and their connectivity related to three sublexical effects: phonological regularity (whether the whole character's pronunciation aligns with its phonetic radical), phonological consistency (whether characters with the same phonetic radical share the same pronunciation), and semantic transparency (whether the whole character's meaning aligns with its semantic radical). The results revealed that sublexical effects existed in the inferior frontal gyrus, precentral and postcentral gyri, temporal lobe, and middle occipital gyrus. Additionally, connectivity from the middle occipital gyrus to the postcentral gyrus and from postcentral gyrus to the fusiform gyrus was associated with the sublexical effects. These findings provide valuable insights into the spatiotemporal dynamics of sublexical processing and object recognition in the brain.Significance statementElucidating the intricate neural mechanisms underlying sublexical processing is crucial for understanding the intricacies of language comprehension and object recognition in the human brain. This study employed intracranial stereoelectroencephalography (SEEG) recordings to investigate the spatiotemporal dynamics of sublexical processing during a Chinese character reading task. We constructed a neural network for sublexical processing and depicted its temporal sequence in different brain regions. Furthermore, we identified the information flow within this network and observed its variation with the reading of characters containing different sublexical information. These findings not only advance our understanding of the cerebral mechanisms governing sublexical processing but also offer insights into the broader framework of object recognition processes.
Funder
MOST | National Natural Science Foundation of China
Publisher
Society for Neuroscience