Columnar Localization and Laminar Origin of Cortical Surface Electrical Potentials

Author:

Baratham Vyassa L.,Dougherty Maximilian E.,Hermiz John,Ledochowitsch Peter,Maharbiz Michel M.,Bouchard Kristofer E.ORCID

Abstract

Electrocorticography (ECoG) methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources are poorly understood. To address this gap, we recorded from rat auditory cortex using customized μECoG, and simulated cortical surface electrical potentials with a full-scale, biophysically detailed cortical column model. Experimentally, μECoG-derived auditory representations were tonotopically organized and signals were anisotropically localized to less than or equal to ±200 μm, that is, a single cortical column. Biophysical simulations reproduce experimental findings and indicate that neurons in cortical layers V and VI contribute ∼85% of evoked high-gamma signal recorded at the surface. Cell number and synchrony were the primary biophysical properties determining laminar contributions to evoked μECoG signals, whereas distance was only a minimal factor. Thus, evoked μECoG signals primarily originate from neurons in the infragranular layers of a single cortical column.SIGNIFICANCE STATEMENTECoG methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources are poorly understood. We investigated the localization and origins of sensory-evoked ECoG responses. We experimentally found that ECoG responses were anisotropically localized to a cortical column. Biophysically detailed simulations revealed that neurons in layers V and VI were the primary sources of evoked ECoG responses. These results indicate that evoked ECoG high-gamma responses are primarily generated by the population spike rate of pyramidal neurons in layers V and VI of single cortical columns and highlight the possibility of understanding how microscopic sources produce mesoscale signals.

Funder

U.S. Department of Energy

HHS | NIH | National Institute of Neurological Disorders and Stroke

Marco Microelectronics Advanced Research Corporation

National Science Foundation

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3