Category Trumps Shape as an Organizational Principle of Object Space in the Human Occipitotemporal Cortex

Author:

Yargholi Elahe',Op de Beeck HansORCID

Abstract

The organizational principles of the object space represented in the human ventral visual cortex are debated. Here we contrast two prominent proposals that, in addition to an organization in terms of animacy, propose either a representation related to aspect ratio (stubby-spiky) or to the distinction between faces and bodies. We designed a critical test that dissociates the latter two categories from aspect ratio and investigated responses from human fMRI (of either sex) and deep neural networks (BigBiGAN). Representational similarity and decoding analyses showed that the object space in the occipitotemporal cortex and BigBiGAN was partially explained by animacy but not by aspect ratio. Data-driven approaches showed clusters for face and body stimuli and animate-inanimate separation in the representational space of occipitotemporal cortex and BigBiGAN, but no arrangement related to aspect ratio. In sum, the findings go in favor of a model in terms of an animacy representation combined with strong selectivity for faces and bodies.SIGNIFICANCE STATEMENTWe contrasted animacy, aspect ratio, and face-body as principal dimensions characterizing object space in the occipitotemporal cortex. This is difficult to test, as typically faces and bodies differ in aspect ratio (faces are mostly stubby and bodies are mostly spiky). To dissociate the face-body distinction from the difference in aspect ratio, we created a new stimulus set in which faces and bodies have a similar and very wide distribution of values along the shape dimension of the aspect ratio. Brain imaging (fMRI) with this new stimulus set showed that, in addition to animacy, the object space is mainly organized by the face-body distinction and selectivity for aspect ratio is minor (despite its wide distribution).

Funder

Fonds Wetenschappelijk Onderzoek

Excellence Of Science

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3