Emergence of Distinct Neural Subspaces in Motor Cortical Dynamics during Volitional Adjustments of Ongoing Locomotion

Author:

Xing David,Truccolo Wilson,Borton David A.ORCID

Abstract

The ability to modulate ongoing walking gait with precise, voluntary adjustments is what allows animals to navigate complex terrains. However, how the nervous system generates the signals to precisely control the limbs while simultaneously maintaining locomotion is poorly understood. One potential strategy is to distribute the neural activity related to these two functions into distinct cortical activity coactivation subspaces so that both may be conducted simultaneously without disruptive interference. To investigate this hypothesis, we recorded the activity of primary motor cortex in male nonhuman primates during obstacle avoidance on a treadmill. We found that the same neural population was active during both basic unobstructed locomotion and volitional obstacle avoidance movements. We identified the neural modes spanning the subspace of the low-dimensional dynamics in primary motor cortex and found a subspace that consistently maintains the same cyclic activity throughout obstacle stepping, despite large changes in the movement itself. All of the variance corresponding to this large change in movement during the obstacle avoidance was confined to its own distinct subspace. Furthermore, neural decoders built for ongoing locomotion did not generalize to decoding obstacle avoidance during locomotion. Our findings suggest that separate underlying subspaces emerge during complex locomotion that coordinates ongoing locomotor-related neural dynamics with volitional gait adjustments. These findings may have important implications for the development of brain–machine interfaces.SIGNIFICANCE STATEMENTLocomotion and precise, goal-directed movements are two distinct movement modalities with known differing requirements of motor cortical input. Previous studies have characterized the cortical activity during obstacle avoidance while walking in rodents and felines, but, to date, no such studies have been completed in primates. Additionally, in any animal model, it is unknown how these two movements are represented in primary motor cortex (M1) low-dimensional dynamics when both activities are performed at the same time, such as during obstacle avoidance. We developed a novel obstacle avoidance paradigm in freely moving nonhuman primates and discovered that the rhythmic locomotion-related dynamics and the voluntary, gait-adjustment movement separate into distinct subspaces in M1 cortical activity. Our analysis of decoding generalization may also have important implications for the development of brain–machine interfaces.

Funder

DOD | Defense Advanced Research Projects Agency

U.S. Department of Veterans Affairs

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3