Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gαqand GαsActivate theCaenorhabditis elegansEgg-Laying Muscles

Author:

Olson Andrew C.,Butt Allison M.,Christie Nakeirah T.M.,Shelar Ashish,Koelle Michael R.ORCID

Abstract

Individual neurons or muscle cells express many G-protein-coupled receptors (GPCRs) for neurotransmitters and neuropeptides, yet it remains unclear how cells integrate multiple GPCR signals that all must activate the same few G-proteins. We analyzed this issue in theCaenorhabditis elegansegg-laying system, where multiple GPCRs on muscle cells promote contraction and egg laying. We genetically manipulated individual GPCRs and G-proteins specifically in these muscle cells within intact animals and then measured egg laying and muscle calcium activity. Two serotonin GPCRs on the muscle cells, Gαq-coupled SER-1 and Gαs-coupled SER-7, together promote egg laying in response to serotonin. We found that signals produced by either SER-1/Gαqor SER-7/Gαsalone have little effect, but these two subthreshold signals combine to activate egg laying. We then transgenically expressed natural or designer GPCRs in the muscle cells and found that their subthreshold signals can also combine to induce muscle activity. However, artificially inducing strong signaling through just one of these GPCRs can be sufficient to induce egg laying. Knocking down Gαqand Gαsin the egg-laying muscle cells induced egg-laying defects that were stronger than those of a SER-1/SER-7 double knockout, indicating that additional endogenous GPCRs also activate the muscle cells. These results show that in the egg-laying muscles multiple GPCRs for serotonin and other signals each produce weak effects that individually do not result in strong behavioral outcomes. However, they combine to produce sufficient levels of Gαqand Gαssignaling to promote muscle activity and egg laying.SIGNIFICANCE STATEMENTHow can neurons and other cells gather multiple independent pieces of information from the soup of chemical signals in their environment and compute an appropriate response? Most cells express >20 GPCRs that each receive one signal and transmit that information through three main types of G-proteins. We analyzed how this machinery generates responses by studying the egg-laying system ofC. elegans, where serotonin and multiple other signals act through GPCRs on the egg-laying muscles to promote muscle activity and egg laying. We found that individual GPCRs within an intact animal each generate effects too weak to activate egg laying. However, combined signaling from multiple GPCR types reaches a threshold capable of activating the muscle cells.

Funder

NIH

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3