Evolution Increases Primates Brain Complexity Extending RbFOX1 Splicing Activity to LSD1 Modulation

Author:

Forastieri Chiara,Italia MariaORCID,Toffolo Emanuela,Romito Elena,Bonasoni Maria Paola,Ranzani Valeria,Bodega Beatrice,Rusconi Francesco,Battaglioli Elena

Abstract

Recent branching (100 MYA) of the mammalian evolutionary tree has enhanced brain complexity and functions at the putative cost of increased emotional circuitry vulnerability. Thus, to better understand psychopathology, a burden for the modern society, novel approaches should exploit evolutionary aspects of psychiatric-relevant molecular pathways. A handful of genes is nowadays tightly associated to psychiatric disorders. Among them, neuronal-enriched RbFOX1 modifies the activity of synaptic regulators in response to neuronal activity, keeping excitability within healthy domains. We here dissect a higher primates-restricted interaction between RbFOX1 and the transcriptional corepressor Lysine Specific Demethylase 1 (LSD1/KDM1A). A single nucleotide variation (AA to AG) inLSD1gene appeared in higher primates and humans, endowing RbFOX1 with the ability to promote the alternative usage of a novel 3′ AG splice site, which extends LSD1 exon E9 in the upstream intron (E9-long). Exon E9-long regulates LSD1 levels by Nonsense-Mediated mRNA Decay. As reintroduction of the archaicLSD1variant (AA) abolishes E9-long splicing, the novel 3′ AG splice site is necessary for RbFOX1 to control LSD1 levels. LSD1 is a homeostatic immediate early genes (IEGs) regulator playing a relevant part in environmental stress-response. In primates and humans, inclusion of LSD1 as RbFOX1 target provides RbFOX1 with the additional ability to regulate the IEGs. These data, together with extensive RbFOX1 involvement in psychiatric disorders and its stress-dependent regulation in male mice, suggest the RbFOX1-LSD1-IEGs axis as an evolutionary recent psychiatric-relevant pathway. Notably, outside the nervous system, RbFOX2-dependent LSD1 modulation could be a candidate deregulated mechanism in cancer.SIGNIFICANCE STATEMENTTo be better understood, anxiety and depression need large human genetics studies aimed at further resolving the often ambiguous, aberrant neuronal pathomechanisms that impact corticolimbic circuitry physiology. Several genetic associations of the alternative splicing regulator RbFOX1 with psychiatric conditions suggest homeostatic unbalance as a neuronal signature of psychopathology. Here we move a step forward, characterizing a disease-relevant higher primates-specific pathway by which RbFOX1 acquires the ability to regulate neuronal levels of Lysine Specific Demethylase 1, an epigenetic modulator of environmental stress response. Thus, two brain-enriched enzymes, independently shown to homeostatically protect neurons with a clear readout in terms of emotional behavior in lower mammals, establish in higher primates and humans a new functional cooperation enhancing the complexity of environmental adaptation and stress vulnerability.

Funder

Fondazione Telethon

Fondazione Cariplo

University of Milan

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3