Abstract
A common problem in motor control concerns how to generate patterns of muscle activity when there are redundant solutions to attain a behavioral goal. Optimal feedback control is a theory that has guided many behavioral studies exploring how the motor system incorporates task redundancy. This theory predicts that kinematic errors that deviate the limb should not be corrected if one can still attain the behavioral goal. Studies in humans demonstrate that the motor system can flexibly integrate visual and proprioceptive feedback of the limb with goal redundancy within 90 ms and 70 ms, respectively. Here, we show monkeys (Macaca mulatta) demonstrate similar abilities to exploit goal redundancy. We trained four male monkeys to reach for a goal that was either a narrow square or a wide, spatially redundant rectangle. Monkeys exhibited greater trial-by-trial variability when reaching to the wide goal consistent with exploiting goal redundancy. On random trials we jumped the visual feedback of the hand and found monkeys corrected for the jump when reaching to the narrow goal and largely ignored the jump when reaching for the wide goal. In a separate set of experiments, we applied mechanical loads to the arm of the monkey and found similar corrective responses based on goal shape. Muscle activity reflecting these different corrective responses were detected for the visual and mechanical perturbations starting at ∼90 and ∼70 ms, respectively. Thus, rapid motor responses in macaques can exploit goal redundancy similar to humans, creating a paradigm to study the neural basis of goal-directed motor action and motor redundancy.SIGNIFICANCE STATEMENTMoving in the world requires selecting from an infinite set of possible motor commands. Theories predict that motor commands are selected that exploit redundancies. Corrective responses in humans to either visual or proprioceptive disturbances of the limb can rapidly exploit redundant trajectories to a goal in <100 ms after a disturbance. However, uncovering the neural correlates generating these rapid motor corrections has been hampered by the absence of an animal model. We developed a behavioral paradigm in monkeys that incorporates redundancy in the form of the shape of the goal. Critically, monkeys exhibit corrective responses and timings similar to humans performing the same task. Our paradigm provides a model for investigating the neural correlates of sophisticated rapid motor corrections.
Funder
Gouvernement du Canada | Canadian Institutes of Health Research
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献