Proprioceptive and Visual Feedback Responses in Macaques Exploit Goal Redundancy

Author:

Cross Kevin P.ORCID,Guang Hui,Scott Stephen H.ORCID

Abstract

A common problem in motor control concerns how to generate patterns of muscle activity when there are redundant solutions to attain a behavioral goal. Optimal feedback control is a theory that has guided many behavioral studies exploring how the motor system incorporates task redundancy. This theory predicts that kinematic errors that deviate the limb should not be corrected if one can still attain the behavioral goal. Studies in humans demonstrate that the motor system can flexibly integrate visual and proprioceptive feedback of the limb with goal redundancy within 90 ms and 70 ms, respectively. Here, we show monkeys (Macaca mulatta) demonstrate similar abilities to exploit goal redundancy. We trained four male monkeys to reach for a goal that was either a narrow square or a wide, spatially redundant rectangle. Monkeys exhibited greater trial-by-trial variability when reaching to the wide goal consistent with exploiting goal redundancy. On random trials we jumped the visual feedback of the hand and found monkeys corrected for the jump when reaching to the narrow goal and largely ignored the jump when reaching for the wide goal. In a separate set of experiments, we applied mechanical loads to the arm of the monkey and found similar corrective responses based on goal shape. Muscle activity reflecting these different corrective responses were detected for the visual and mechanical perturbations starting at ∼90 and ∼70 ms, respectively. Thus, rapid motor responses in macaques can exploit goal redundancy similar to humans, creating a paradigm to study the neural basis of goal-directed motor action and motor redundancy.SIGNIFICANCE STATEMENTMoving in the world requires selecting from an infinite set of possible motor commands. Theories predict that motor commands are selected that exploit redundancies. Corrective responses in humans to either visual or proprioceptive disturbances of the limb can rapidly exploit redundant trajectories to a goal in <100 ms after a disturbance. However, uncovering the neural correlates generating these rapid motor corrections has been hampered by the absence of an animal model. We developed a behavioral paradigm in monkeys that incorporates redundancy in the form of the shape of the goal. Critically, monkeys exhibit corrective responses and timings similar to humans performing the same task. Our paradigm provides a model for investigating the neural correlates of sophisticated rapid motor corrections.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3