Abstract
Numerous studies suggest that biological neuronal networks self-organize toward a critical state with stable recruitment dynamics. Individual neurons would then statistically activate exactly one further neuron during activity cascades termed neuronal avalanches. Yet, it is unclear if and how this can be reconciled with the explosive recruitment dynamics within neocortical minicolumnsin vivoand within neuronal clustersin vitro, which indicates that neurons form supercritical local circuits. Theoretical studies propose that modular networks with a mix of regionally subcritical and supercritical dynamics would create apparently critical dynamics, resolving this inconsistency. Here, we provide experimental support by manipulating the structural self-organization process of networks of cultured rat cortical neurons (either sex). Consistent with the prediction, we show that increasing clustering in neuronal networks developingin vitrostrongly correlates with avalanche size distributions transitioning from supercritical to subcritical activity dynamics. Avalanche size distributions approximated a power law in moderately clustered networks, indicating overall critical recruitment. We propose that activity-dependent self-organization can tune inherently supercritical networks toward mesoscale criticality by creating a modular structure in neuronal networks.SIGNIFICANCE STATEMENTCritical recruitment dynamics in neuronal networks are considered optimal for information processing in the brain. However, it remains heavily debated how neuronal networks would self-organize criticality by detailed fine-tuning of connectivity, inhibition, and excitability. We provide experimental support for theoretical considerations that modularity tunes critical recruitment dynamics at the mesoscale level of interacting neuron clusters. This reconciles reports of supercritical recruitment dynamics in local neuron clusters with findings on criticality sampled at mesoscopic network scales. Intriguingly, altered mesoscale organization is a prominent aspect of various neuropathological diseases currently investigated in the framework of criticality. We therefore believe that our findings would also be of interest for clinical scientists searching to link the functional and anatomic signatures of such brain disorders.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Carl-Zeiss-Stiftung
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献