Tunable Action Potential Repolarization Governed by Kv3.4 Channels in Dorsal Root Ganglion Neurons

Author:

Alexander Tyler D.ORCID,Muqeem Tanziyah,Zhi Lianteng,Tymanskyj Stephen R.,Covarrubias ManuelORCID

Abstract

The Kv3.4 channel regulates action potential (AP) repolarization in nociceptors and excitatory synaptic transmission in the spinal cord. We hypothesize that this is a tunable role governed by protein kinase-C-dependent phosphorylation of the Kv3.4 cytoplasmic N-terminal inactivation domain (NTID) at four nonequivalent sites. However, there is a paucity of causation evidence linking the phosphorylation status of Kv3.4 to the properties of the AP. To establish this link, we used adeno-associated viral vectors to specifically manipulate the expression and the effective phosphorylation status of Kv3.4 in cultured dorsal root ganglion (DRG) neurons from mixed-sex rat embryos at embryonic day 18. These vectors encoded GFP (background control), wild-type (WT) Kv3.4, phosphonull (PN) Kv3.4 mutant (PN = S[8,9,15,21]A), phosphomimic (PM) Kv3.4 mutant (PM = S[8,9,15,21]D), and a Kv3.4 nonconducting dominant-negative (DN) pore mutant (DN = W429F). Following viral infection of the DRG neurons, we evaluated transduction efficiency and Kv3.4 expression and function via fluorescence microscopy and patch clamping. All functional Kv3.4 constructs induced current overexpression with similar voltage dependence of activation. However, whereas Kv3.4-WT and Kv3.4-PN induced fast transient currents, the Kv3.4-PM induced currents exhibiting impaired inactivation. In contrast, the Kv3.4-DN abolished the endogenous Kv3.4 current. Consequently, Kv3.4-DN and Kv3.4-PM produced APs with the longest and shortest durations, respectively, whereas Kv3.4-WT and Kv3.4-PN produced intermediate results. Moreover, the AP widths and maximum rates of AP repolarization from these groups are negatively correlated. We conclude that the expression and effective phosphorylation status of the Kv3.4 NTID confer a tunable mechanism of AP repolarization, which may provide exquisite regulation of pain signaling in DRG neurons.SIGNIFICANCE STATEMENTThe AP is an all-or-none millisecond-long electrical impulse that encodes information in the frequency and patterns of repetitive firing. However, signaling may also depend on the plasticity and diversity of the AP waveform. For instance, the shape and duration of the AP may regulate nociceptive synaptic transmission between a primary sensory afferent to a secondary neuron in the spinal cord. Here, we used mutants of the Kv3.4 voltage-gated potassium channel to manipulate its expression and effective phosphorylation status in dorsal root ganglion neurons and directly show how the expression and malleable inactivation properties of Kv3.4 govern the AP duration and repolarization rate. These results elucidate a mechanism of neural AP plasticity that may regulate pain signaling.

Funder

Autifony Therapeutics, Ltd.

Farber Discovery Fund

Jefferson Synaptic Biology Center

Dubbs Fellowship

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3