Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome

Author:

Miles Kaleb D.,Barker Chase M.ORCID,Russell Kristen P.,Appel Bruce H.ORCID,Doll Caleb A.ORCID

Abstract

Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity betweenmnx1+MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Society for Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3