Semaphorin-6D and Plexin-A1 Act in a Non–Cell-Autonomous Manner to Position and Target Retinal Ganglion Cell Axons

Author:

Prieur Delphine S.,Francius Cédric,Gaspar PatriciaORCID,Mason Carol A.ORCID,Rebsam Alexandra

Abstract

Semaphorins and Plexins form ligand/receptor pairs that are crucial for a wide range of developmental processes from cell proliferation to axon guidance. The ability of semaphorins to act both as signaling receptors and ligands yields a multitude of responses. Here, we describe a novel role for Semaphorin-6D (Sema6D) and Plexin-A1 in the positioning and targeting of retinogeniculate axons. InPlexin-A1orSema6Dmutant mice of either sex, the optic tract courses through, rather than along, the border of the dorsal lateral geniculate nucleus (dLGN), and some retinal axons ectopically arborize adjacent and lateral to the optic tract rather than defasciculating and entering the target region. We find that Sema6D and Plexin-A1 act together in a dose-dependent manner, as the number of the ectopic retinal projections is altered in proportion to the level of Sema6D or Plexin-A1 expression. Moreover, using retinalin uteroelectroporation of Sema6D or Plexin-A1 shRNA, we show that Sema6D and Plexin-A1 are both required in retinal ganglion cells for axon positioning and targeting. Strikingly, nonelectroporated retinal ganglion cell axons also mistarget in the tract region, indicating that Sema6D and Plexin-A1 can act non–cell-autonomously, potentially through axon–axon interactions. These data provide novel evidence for a dose-dependent and non–cell-autonomous role for Sema6D and Plexin-A1 in retinal axon organization in the optic tract and dLGN.SIGNIFICANCE STATEMENTBefore innervating their central brain targets, retinal ganglion cell axons fasciculate in the optic tract and then branch and arborize in their target areas. Upon deletion of the guidance molecules Plexin-A1 or Semaphorin-6D, the optic tract becomes disorganized near and extends within the dorsal lateral geniculate nucleus. In addition, some retinal axons form ectopic aggregates within the defasciculated tract. Sema6D and Plexin-A1 act together as a receptor-ligand pair in a dose-dependent manner, and non–cell-autonomously, to produce this developmental aberration. Such a phenotype highlights an underappreciated role for axon guidance molecules in tract cohesion and appropriate defasciculation near, and arborization within, targets.

Funder

Institut National de la Sané et de la Recherche Médicale

Sorbonne Université

HHS | NIH | National Eye Institute

Agence Nationale de la Recherche

Retina France

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3