Reproducibility of the Rod Photoreceptor Response Depends Critically on the Concentration of the Phosphodiesterase Effector Enzyme

Author:

Morshedian Ala,Sendek Gabriela,Ng Sze Yin,Boyd Kimberly,Radu Roxana A.,Liu Mingyao,Artemyev Nikolai O.ORCID,Sampath Alapakkam P.ORCID,Fain Gordon L.ORCID

Abstract

The high sensitivity of night vision requires that rod photoreceptors reliably and reproducibly signal the absorption of single photons, a process that depends on tight regulation of intracellular cGMP concentration through the phototransduction cascade. Here in the mouse (Mus musculus), we studied a single-siteD167Amutation of the gene for the α subunit of rod photoreceptor phosphodiesterase (PDEA), made with the aim of removing a noncatalytic binding site for cGMP. This mutation unexpectedly eliminated nearly all PDEA expression and reduced expression of the β subunit (PDEB) to ∼5%-10% of WT. The remaining PDE had nearly normal specific activity; degeneration was slow, with 50%-60% of rods remaining after 6 months. Responses were larger and more sensitive than normal but slower in rise and decay, probably from slower dark turnover of cGMP. Remarkably, responses became much less reproducible than WT, with response variance increasing for amplitude by over 10-fold, and for latency and time-to-peak by >100-fold. We hypothesize that the increase in variance is the result of greater variability in the dark-resting concentration of cGMP, produced by spatial and temporal nonuniformity in spontaneous PDE activity. This variability decreased as stimuli were made brighter, presumably because of greater spatial uniformity of phototransduction and the approach to saturation. We conclude that the constancy of the rod response depends critically on PDE expression to maintain adequate spontaneous PDE activity, so that the concentration of second messenger is relatively uniform throughout the outer segment.SIGNIFICANCE STATEMENTRod photoreceptors in the vertebrate retina reliably signal the absorption of single photons of light by generating responses that are remarkably reproducible in amplitude and waveform. We show that this reproducibility depends critically on the concentration of the effector enzyme phosphodiesterase (PDE), which metabolizes the second messenger cGMP and generates rod light responses. In rods with theD167Amutation of the α subunit of PDE, only 5%-10% of PDE is expressed. Single-photon responses then become much more variable than in WT rods. We think this variability is caused by spatial and temporal inhomogeneity in the concentration of cGMP in darkness, so that photons absorbed in different parts of the cell produce responses of greatly varying amplitude and waveform.

Funder

HHS | NIH | National Eye Institute

Research to Prevent Blindness

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3