Distinct Lateral Prefrontal Regions Are Organized in an Anterior–Posterior Functional Gradient

Author:

Tan Pin Kwang,Tang Cheng,Herikstad Roger,Pillay Arunika,Libedinsky CamiloORCID

Abstract

The dorsolateral prefrontal cortex (dlPFC) is composed of multiple anatomically defined regions involved in higher-order cognitive processes, including working memory and selective attention. It is organized in an anterior–posterior global gradient where posterior regions track changes in the environment, whereas anterior regions support abstract neural representations. However, it remains unknown if such a global gradient results from a smooth gradient that spans regions or an emergent property arising from functionally distinct regions, that is, an areal gradient. Here, we recorded single neurons in the dlPFC of nonhuman primates trained to perform a memory-guided saccade task with an interfering distractor and analyzed their physiological properties along the anterior–posterior axis. We found that these physiological properties were best described by an areal gradient. Further, population analyses revealed that there is a distributed representation of spatial information across the dlPFC. Our results validate the functional boundaries between anatomically defined dlPFC regions and highlight the distributed nature of computations underlying working memory across the dlPFC.SIGNIFICANCE STATEMENTActivity of frontal lobe regions is known to possess an anterior–posterior functional gradient. However, it is not known whether this gradient is the result of individual brain regions organized in a gradient (like a staircase), or a smooth gradient that spans regions (like a slide). Analysis of physiological properties of individual neurons in the primate frontal regions suggest that individual regions are organized as a gradient, rather than a smooth gradient. At the population level, working memory was more prominent in posterior regions, although it was also present in anterior regions. This is consistent with the functional segregation of brain regions that is also observed in other systems (i.e., the visual system).

Funder

Ministry of Education - Singapore

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3