Deviance detection to natural stimuli in population responses of the brainstem of bats

Author:

Wetekam Johannes,Hechavarría Julio,López-Jury Luciana,González-Palomares Eugenia,Kössl Manfred

Abstract

Deviance detection describes an increase of neural response strength caused by a stimulus with a low probability of occurrence. This ubiquitous phenomenon has been reported for humans and multiple other species, from subthalamic areas to the auditory cortex. Cortical deviance detection has been well characterised by a range of studies using a variety of different stimuli, from artificial to natural, with and without a behavioural relevance. This allowed the identification of a broad variety of regularity deviations that are detected by the cortex. Moreover, subcortical deviance detection has been studied with simple stimuli that are not meaningful to the subject. Here, we aim to bridge this gap by using noninvasively recorded auditory brainstem responses (ABRs) to investigate deviance detection at population level in the lower stations of the auditory system of a highly vocal species: the batCarollia perspicillata(of either sex). Our present approach uses behaviourally relevant vocalisation stimuli that are similar to the animals’ natural soundscape. We show that deviance detection in ABRs is significantly stronger for echolocation pulses than for social communication calls or artificial sounds, indicating that subthalamic deviance detection depends on the behavioural meaning of a stimulus. Additionally, complex physical sound features like frequency- and amplitude-modulation affected the strength of deviance detection in the ABR. In summary, our results suggest that the brain can detect different types of deviants already in the brainstem, showing that subthalamic brain structures exhibit more advanced forms of deviance detection than previously known.Significance statementBats, like all mammals, rely on the identification of regulations and deviations in their acoustic environment. This phenomenon, called deviance detection, has been studied intensively in the past and keeps gaining attention in the field of electrophysiology. Over time, an impressive complexity of deviance detection could be shown, in both animal and human studies. However, complex forms of auditory deviance detection were so far only demonstrated for high-level brain structures. In this study, we show that complex deviance detection beyond simple frequency changes of auditory stimuli is already present in the lowest stations of the auditory pathway, the brainstem. These potentially feedback mediated effects could contribute significantly to the saving of resources very early in the processing of acoustic sounds.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Society for Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3