Distinctive Neurophysiological Signatures of Analgesia after Inflammatory Pain in the ACC of Freely Moving Mice

Author:

Kissinger Samuel T.,O’neil Estefania,Li Baolin,Johnson Kirk W.,Krajewski Jeffrey L.,Kato Akihiko S.

Abstract

Preclinical assessments of pain have often relied upon behavioral measurements and anesthetized neurophysiological recordings. Current technologies enabling large-scale neural recordings, however, have the potential to unveil quantifiable pain signals in conscious animals for preclinical studies. Although pain processing is distributed across many brain regions, the anterior cingulate cortex (ACC) is of particular interest in isolating these signals given its suggested role in the affective (“unpleasant”) component of pain. Here, we explored the utility of the ACC toward preclinical pain research using head-mounted miniaturized microscopes to record calcium transients in freely moving male mice expressing genetically encoded calcium indicator 6f (GCaMP6f) under the Thy1 promoter. We verified the expression of GCaMP6f in excitatory neurons and found no intrinsic behavioral differences in this model. Using a multimodal stimulation paradigm across naive, pain, and analgesic conditions, we found that while ACC population activity roughly scaled with stimulus intensity, single-cell representations were highly flexible. We found only low-magnitude increases in population activity after complete Freund's adjuvant (CFA) and insufficient evidence for the existence of a robust nociceptive ensemble in the ACC. However, we found a temporal sharpening of response durations and generalized increases in pairwise neural correlations in the presence of the mechanistically distinct analgesics gabapentin or ibuprofen after (but not before) CFA-induced inflammatory pain. This increase was not explainable by changes in locomotion alone. Taken together, these results highlight challenges in isolating distinct pain signals among flexible representations in the ACC but suggest a neurophysiological hallmark of analgesia after pain that generalizes to at least two analgesics.

Funder

Eli Lilly and Company

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3