Encoding of visual objects in the human medial temporal lobe

Author:

Wang Yue,Cao Runnan,Wang Shuo

Abstract

The human medial temporal lobe (MTL) plays a crucial role in recognizing visual objects, a key cognitive function that relies on the formation of semantic representations. Nonetheless, it remains unknown how visual information of general objects is translated into semantic representations in the MTL. Furthermore, the debate about whether the human MTL is involved in perception has endured for a long time. To address these questions, we investigated three distinct models of neural object coding—semantic coding, axis-based feature coding, and region-based feature coding—in each subregion of the MTL, using high-resolution fMRI in two male and six female participants. Our findings revealed the presence of semantic coding throughout the MTL, with a higher prevalence observed in the parahippocampal cortex (PHC) and perirhinal cortex (PRC), while axis coding and region coding were primarily observed in the earlier regions of the MTL. Moreover, we demonstrated that voxels exhibiting axis coding supported the transition to region coding and contained information relevant to semantic coding. Together, by providing a detailed characterization of neural object coding schemes and offering a comprehensive summary of visual coding information for each MTL subregion, our results not only emphasize a clear role of the MTL in perceptual processing but also shed light on the translation of perception-driven representations of visual features into memory-driven representations of semantics along the MTL processing pathway.Significance StatementIn this study, we delved into the mechanisms underlying visual object recognition within the human medial temporal lobe (MTL), a pivotal region known for its role in the formation of semantic representations crucial for memory. In particular, the translation of visual information into semantic representations within the MTL has remained unclear, and the enduring debate regarding the involvement of the human MTL in perception has persisted. To address these questions, we comprehensively examined distinct neural object coding models across each subregion of the MTL, leveraging high-resolution fMRI. We also showed transition of information between object coding models and across MTL subregions. Our findings significantly contributes to advancing our understanding of the intricate pathway involved in visual object coding.

Funder

HHS | NIH | National Institute of Mental Health

National Science Foundation

DOD | USAF | AMC | Air Force Office of Scientific Research

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3