Transient Coupling between Infragranular and Subplate Layers to Layer 1 Neurons Before Ear Opening and throughout the Critical Period Depends on Peripheral Activity

Author:

Xue Binghan,Meng Xiangying,Xu Yanqing,Kao Joseph P.Y.,Kanold Patrick O.ORCID

Abstract

Cortical layer 1 (L1) contains a diverse population of interneurons that can modulate processing in superficial cortical layers, but the intracortical sources of synaptic input to these neurons and how these inputs change over development and with sensory experience is unknown. We here investigated the changing intracortical connectivity to L1 in the primary auditory cortex (A1) of mice of both sexes inin vitroslices across development using laser-scanning photostimulation. Before postnatal day (P)10, L1 cells receive excitatory input from within L1, L2/3, L4, and L5/6 as well as from subplate. Excitatory inputs from all layers increase, especially from L4, and peak during P10–P16, around the peak of the critical period for tonotopy. Inhibitory inputs followed a similar pattern. Functional circuit diversity in L1 emerges after P16. In adults, L1 neurons receive ascending inputs from L2/3 and L5/6, but only few inputs from L4. The transient hyperconnectivity from deep layers but not L2/3 is absent in deaf mice. Our results demonstrate that deep excitatory and superficial inhibitory circuits are tightly linked in early development and might provide a functional scaffold for the layers in between. These results suggest that early thalamically driven spontaneous and sensory activity in subplate can be relayed to L1 from the earliest ages on and shape L1 connectivity from deep layers. Our results also reveal a period of high transient columnar hyperconnectivity after ear opening coinciding with the critical period, suggesting that circuits originating in deep layers might play a key role in this process.SIGNIFICANCE STATEMENTL1 contains a diverse population of interneurons that can modulate processing in superficial cortical layers but the sources of synaptic input to these neurons and how these inputs change over development is unknown. We found that during the critical period a large fraction of excitatory inputs to L1 originated in L5/6 and the cortical subplate. This hyperconnectivity is absent in deaf mice. Our results directly demonstrate that deep excitatory and superficial inhibitory circuits are tightly linked in early development and might provide a functional scaffold for the layers in between.

Funder

HHS | NIH | National Institute on Deafness and Other Communication Disorders

HHS | NIH | National Institute of General Medical Sciences

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3