A Gating Mutation in Ryanodine Receptor Type 2 Rescues Phenotypes of Alzheimer’s Disease Mouse Models by Upregulating Neuronal Autophagy

Author:

Zhang Hua,Knight Caitlynn,Chen S.R. Wayne,Bezprozvanny Ilya

Abstract

It is well established that ryanodine receptors (RyanRs) are overactive in Alzheimer’s disease (AD), and it has been suggested that inhibition of RyanR is potentially beneficial for AD treatment. In the present study, we explored a potential connection between basal RyanR activity and autophagy in neurons. Autophagy plays an important role in clearing damaged organelles and long-lived protein aggregates, and autophagy dysregulation occurs in both AD patients and AD animal models. Autophagy is known to be regulated by intracellular calcium (Ca2+) signals, and our results indicated that basal RyanR2 activity in hippocampal neurons inhibited autophagy through activation of calcineurin and the resulting inhibition of the AMPK (AMP-activated protein kinase)–ULK1 (unc-51-like autophagy-activating kinase 1) pathway. Thus, we hypothesized that increased basal RyanR2 activity in AD may lead to the inhibition of neuronal autophagy and accumulation of β-amyloid. To test this hypothesis, we took advantage of the RyanR2-E4872Q knock-in mouse model (EQ) in which basal RyanR2 activity is reduced because of shortened channel open time. We discovered that crossing EQ mice with the APPKI and APPPS1 mouse models of AD (both males and females) rescued amyloid accumulation and LTP impairment in these mice. Our results revealed that reduced basal activity of RyanR2-EQ channels disinhibited the autophagic pathway and led to increased amyloid clearance in these models. These data indicated a potential pathogenic outcome of RyanR2 overactivation in AD and also provided additional targets for therapeutic intervention in AD. Basal activity of ryanodine receptors controls neuronal autophagy and contributes to development of the AD phenotype.SIGNIFICANCE STATEMENTIt is well established that neuronal autophagy is impaired in Alzheimer’s disease (AD). Our results suggest that supranormal calcium (Ca2+) release from endoplasmic reticulum contributes to the inhibition of autophagy in AD and that reduction in basal activity of type 2 ryanodine receptors disinhibits the neuronal autophagic pathway and leads to increased amyloid clearance in AD models. Our findings directly link neuronal Ca2+dysregulation with autophagy dysfunction in AD and point to additional targets for therapeutic intervention.

Funder

National Institute of Aging

Canadian Institutes of Health Research

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3