Sensitivity to Frequency Modulation is Limited Centrally

Author:

Whiteford Kelly L.,Oxenham Andrew J.ORCID

Abstract

Modulations in both amplitude and frequency are prevalent in natural sounds and are critical in defining their properties. Humans are exquisitely sensitive to frequency modulation (FM) at the slow modulation rates and low carrier frequencies that are common in speech and music. This enhanced sensitivity to slow-rate and low-frequency FM has been widely believed to reflect precise, stimulus-driven phase locking to temporal fine structure in the auditory nerve. At faster modulation rates and/or higher carrier frequencies, FM is instead thought to be coded by coarser frequency-to-place mapping, where FM is converted to amplitude modulation (AM) via cochlear filtering. Here we show that patterns of human FM perception that have classically been explained by limits in peripheral temporal coding are instead better accounted for by constraints in the central processing of fundamental frequency (F0) or pitch. We measured FM detection in male and female humans using harmonic complex tones with an F0 within the range of musical pitch, but with resolved harmonic components that were all above the putative limits of temporal phase locking (> 8 kHz). Listeners were more sensitive to slow than fast FM rates, even though all components were beyond the limits of phase locking. In contrast, AM sensitivity remained better at faster than slower rates, regardless of carrier frequency. These findings demonstrate that classic trends in human FM sensitivity, previously attributed to auditory-nerve phase locking, may instead reflect the constraints of a unitary code that operates at a more central level of processing.SIGNIFICANCE STATEMENT:Natural sounds involve dynamic frequency and amplitude fluctuations. Humans are particularly sensitive to frequency modulation (FM) at slow rates and low carrier frequencies, which are prevalent in speech and music. This sensitivity has been ascribed to encoding of stimulus temporal fine structure (TFS) via phase-locked auditory-nerve activity. To test this long-standing theory, we measured FM sensitivity using complex tones with a low fundamental frequency (F0) but only high-frequency harmonics, beyond the limits of phase locking. Dissociating the F0 from high-frequency TFS showed that FM sensitivity is limited not by peripheral encoding of TFS, but rather by central processing of F0, or pitch. The results suggest a unitary code for FM detection limited by more central constraints.

Funder

HHS | National Institutes of Health

Eva O. Miller Fellowship

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3