Causal influence of linguistic learning on perceptual and conceptual processing: A brain-constrained deep neural network study of proper names and category terms

Author:

Nguyen Phuc T. U.,Henningsen-Schomers Malte R.,Pulvermüller Friedemann

Abstract

Language influences cognitive and conceptual processing, but the mechanisms through which such causal effects are realized in the human brain remain unknown. Here, we use a brain-constrained deep neural network model of category formation and symbol learning and analyze the emergent model-internal mechanisms at the neural circuit level. In one set of simulations, the network was presented with similar patterns of neural activity indexing instances of objects and actions belonging to the same categories. Biologically realistic Hebbian learning led to the formation of instance-specific neurons distributed across multiple areas of the network, and, in addition, to cell assembly circuits of ‘shared’ neurons responding to all category instances – the network correlates of conceptual categories. In two separate sets of simulations, the network learned the same patterns together with symbols for individual instances (‘proper names’) or symbols related to classes of instances sharing common features (‘category terms’). Learning category terms remarkably increased the number of shared neurons in the network, thereby making category representations more robust while reducing the number of neurons of instance-specific ones. In contrast, proper-name learning prevented substantial reduction of instance-specific neurons and blocked the overgrowth of category-general cells. Representational Similarity Analysis further confirmed that the neural activity patterns of category instances became more similar to each other after category-term learning, relative to both learning with proper names and without any symbols. These network-based mechanisms for concepts, proper names and category terms explain why and how symbol learning changes object perception and memory, as revealed by experimental studies.Significance StatementHow do verbal symbols for specific individuals (Micky Mouse) and object categories (house mouse) causally influence conceptual representation and processing? Category terms and proper names have been shown to respectively promote category formation and instance learning, potentially by respectively directing attention to category-critical and object-specific features. Yet the mechanisms underlying these observations at the neural circuit level remained unknown. Using a mathematically precise deep neural network model constrained by properties of the human brain, we show category-term learning strengthens and solidifies conceptual representations, whereas proper names support object-specific mechanisms. Based on network-internal mechanisms and unsupervised correlation-based learning, this work offers neurobiological explanations for causal effects of symbol learning on concept formation, category building and instance representation in the human brain.

Funder

EC | European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Society for Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3