Network Communications Flexibly Predict Visual Contents That Enhance Representations for Faster Visual Categorization

Author:

Yan Yuening,Zhan Jiayu,Ince Robin A. A.ORCID,Schyns Philippe G.

Abstract

Models of visual cognition generally assume that brain networks predict the contents of a stimulus to facilitate its subsequent categorization. However, understanding prediction and categorization at a network level has remained challenging, partly because we need to reverse engineer their information processing mechanisms from the dynamic neural signals. Here, we used connectivity measures that can isolate the communications of a specific content to reconstruct these network mechanisms in each individual participant (N= 11, both sexes). Each was cued to the spatial location (left vs right) and contents [low spatial frequency (LSF) vs high spatial frequency (HSF)] of a predicted Gabor stimulus that they then categorized. Using each participant's concurrently measured MEG, we reconstructed networks that predict and categorize LSF versus HSF contents for behavior. We found that predicted contents flexibly propagate top down from temporal to lateralized occipital cortex, depending on task demands, under supervisory control of prefrontal cortex. When they reach lateralized occipital cortex, predictions enhance the bottom-up LSF versus HSF representations of the stimulus, all the way from occipital-ventral-parietal to premotor cortex, in turn producing faster categorization behavior. Importantly, content communications are subsets (i.e., 55–75%) of the signal-to-signal communications typically measured between brain regions. Hence, our study isolates functional networks that process the information of cognitive functions.SIGNIFICANCE STATEMENTAn enduring cognitive hypothesis states that our perception is partly influenced by the bottom-up sensory input but also by top-down expectations. However, cognitive explanations of the dynamic brain networks mechanisms that flexibly predict and categorize the visual input according to task-demands remain elusive. We addressed them in a predictive experimental design by isolating the network communications of cognitive contents from all other communications. Our methods revealed a Prediction Network that flexibly communicates contents from temporal to lateralized occipital cortex, with explicit frontal control, and an occipital-ventral-parietal-frontal Categorization Network that represents more sharply the predicted contents from the shown stimulus, leading to faster behavior. Our framework and results therefore shed a new light of cognitive information processing on dynamic brain activity.

Funder

Wellcome Trust

DOD | Multidisciplinary University Research Initiative

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3