Neural Index of Reinforcement Learning Predicts Improved Stimulus–Response Retention under High Working Memory Load

Author:

Rac-Lubashevsky RachelORCID,Cremer Anna,Collins Anne G.E.ORCID,Frank Michael J.ORCID,Schwabe LarsORCID

Abstract

Human learning and decision-making are supported by multiple systems operating in parallel. Recent studies isolating the contributions of reinforcement learning (RL) and working memory (WM) have revealed a trade-off between the two. An interactive WM/RL computational model predicts that although high WM load slows behavioral acquisition, it also induces larger prediction errors in the RL system that enhance robustness and retention of learned behaviors. Here, we tested this account by parametrically manipulating WM load during RL in conjunction with EEG in both male and female participants and administered two surprise memory tests. We further leveraged single-trial decoding of EEG signatures of RL and WM to determine whether their interaction predicted robust retention. Consistent with the model, behavioral learning was slower for associations acquired under higher load but showed parametrically improved future retention. This paradoxical result was mirrored by EEG indices of RL, which were strengthened under higher WM loads and predictive of more robust future behavioral retention of learned stimulus–response contingencies. We further tested whether stress alters the ability to shift between the two systems strategically to maximize immediate learning versus retention of information and found that induced stress had only a limited effect on this trade-off. The present results offer a deeper understanding of the cooperative interaction between WM and RL and show that relying on WM can benefit the rapid acquisition of choice behavior during learning but impairs retention.SIGNIFICANCE STATEMENTSuccessful learning is achieved by the joint contribution of the dopaminergic RL system and WM. The cooperative WM/RL model was productive in improving our understanding of the interplay between the two systems during learning, demonstrating that reliance on RL computations is modulated by WM load. However, the role of WM/RL systems in the retention of learned stimulus–response associations remained unestablished. Our results show that increased neural signatures of learning, indicative of greater RL computation, under high WM load also predicted better stimulus–response retention. This result supports a trade-off between the two systems, where degraded WM increases RL processing, which improves retention. Notably, we show that this cooperative interplay remains largely unaffected by acute stress.

Funder

Landesforschungsfoerdung Hamburg, Germany

NIH

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3