Novel Electrophysiological Signatures of Learning and Forgetting in Human Rapid Eye Movement Sleep

Author:

Shuster Alessandra E.ORCID,Chen Pin-ChunORCID,Niknazar Hamid,McDevitt Elizabeth A.,Lopour Beth,Mednick Sara C.

Abstract

Despite the known behavioral benefits of rapid eye movement (REM) sleep, discrete neural oscillatory events in human scalp electroencephalography (EEG) linked with behavior have not been discovered. This knowledge gap hinders mechanistic understanding of the function of sleep, as well as the development of biophysical models and REM-based causal interventions. We designed a detection algorithm to identify bursts of activity in high-density, scalp EEG within theta (48 Hz) and alpha (813 Hz) bands during REM sleep. Across 38 nights of sleep, we characterized the burst events (i.e., count, duration, density, peak frequency, amplitude) in healthy, young male and female human participants (38; 21F) and investigated burst activity in relation to sleep-dependent memory tasks: hippocampal-dependent episodic verbal memory and nonhippocampal visual perceptual learning. We found greater burst count during the more REM-intensive second half of the night ( p < 0.05), longer burst duration during the first half of the night ( p < 0.05), but no differences across the night in density or power ( p > 0.05). Moreover, increased alpha burst power was associated with increased overnight forgetting for episodic memory ( p < 0.05). Furthermore, we show that increased REM theta burst activity in retinotopically specific regions was associated with better visual perceptual performance. Our work provides a critical bridge between discrete REM sleep events in human scalp EEG that support cognitive processes and the identification of similar activity patterns in animal models that allow for further mechanistic characterization.

Funder

National Institute on Aging

National Science Foundation

Publisher

Society for Neuroscience

Reference80 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3