Structural Organization of Perisomatic Inhibition in the Mouse Medial Prefrontal Cortex

Author:

Nagy-Pál PetraORCID,Veres Judit M.,Fekete Zsuzsanna,Karlócai Mária R.,Weisz FilippoORCID,Barabás Bence,Reéb Zsófia,Hájos NorbertORCID

Abstract

Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis ofin vitrolabeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENTInhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.

Funder

Hungarian Brain Research Program

NKFI | National Research, Development and Innovation Office

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3