Interneuron-Targeted Disruption ofSYNGAP1Alters Sensory Representations in the Neocortex and Impairs Sensory Learning

Author:

Zhao Meiling,Kwon Sung EunORCID

Abstract

SYNGAP1haploinsufficiency in humans leads to severe neurodevelopmental disorders characterized by intellectual disability, autism, epilepsy, and sensory processing deficits. However, the circuit mechanisms underlying these disorders are not well understood. In mice, a decrease of SynGAP levels results in cognitive deficits by interfering with the development of excitatory glutamatergic connections. Recent evidence suggests that SynGAP also plays a crucial role in the development and function of GABAergic inhibitory interneurons. Nevertheless, it remains uncertain whether and to what extent the expression ofSYNGAP1in inhibitory interneurons contributes to cortical circuit function and related behaviors. The activity of cortical neurons has not been measured simultaneously with behavior. To address these gaps, we recorded from layer 2/3 neurons in the primary whisker somatosensory cortex (wS1) of mice while they learned to perform a whisker tactile detection task. Our results demonstrate that mice with interneuron-specificSYNGAP1haploinsufficiency exhibit learning deficits characterized by heightened behavioral responses in the absence of relevant sensory input and premature responses to unrelated sensory stimuli not associated with reward acquisition. These behavioral deficits are accompanied by specific circuit abnormalities within wS1. Interneuron-specificSYNGAP1haploinsufficiency increases detrimental neuronal correlations directly related to task performance and enhances responses to irrelevant sensory stimuli unrelated to the reward acquisition. In summary, our findings indicate that a reduction of SynGAP in inhibitory interneurons impairs sensory representation in the primary sensory cortex by disrupting neuronal correlations, which likely contributes to the observed cognitive deficits in mice with pan-neuronalSYNGAP1haploinsufficiency.SIGNIFICANCE STATEMENTSYNGAP1haploinsufficiency leads to severe neurodevelopmental disorders. The exact nature of neural circuit dysfunction caused bySYNGAP1haploinsufficiency remains poorly understood. SynGAP plays a critical role in the function of GABAergic inhibitory interneurons as well as glutamatergic pyramidal neurons in the neocortex. Whether and how decreasingSYNGAP1level in inhibitory interneurons disrupts a behaviorally relevant circuit remains unclear. We measure neural activity and behavior in mice learning a perceptual task. Mice with interneuron-targeted disruption ofSYNGAP1display increased detrimental neuronal correlations and elevated responses to irrelevant sensory inputs, which are related to impaired task performance. These results show that cortical interneuron dysfunction contributes to sensory deficits inSYNGAP1haploinsufficiency with important implications for identifying therapeutic targets.

Funder

Simons Foundation Autism Research Initiative

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3