Mixed Selectivity in the Cerebellar Purkinje-Cell Response during Visuomotor Association Learning

Author:

Sendhilnathan NaveenORCID,Goldberg Michael E.,Ipata Anna E.

Abstract

Although the cerebellum has been traditionally considered to be exclusively involved in motor control, recent anatomic and clinical studies show that it also has a role in reward-processing. However, the way in which the movement-related and the reward-related neural activity interact at the level of the cerebellar cortex and contribute toward learning is still unclear. Here, we studied the simple spike activity of Purkinje cells in the mid-lateral cerebellum when 2 male monkeys learned to associate a right or left-hand movement with one of two visual symbolic cues. These cells had distinctly different discharge patterns between an overtrained symbol–hand association and a novel symbol–hand association, responding in association with the movement of both hands, although the kinematics of the movement did not change between the two conditions. The activity change was not related to the pattern of the visual symbols, the movement kinematics, the monkeys' reaction times, or the novelty of the visual symbols. The simple spike activity changed throughout the learning process, but the concurrent complex spikes did not instruct that change. Although these neurons also have reward-related activity, the reward-related and movement-related signals were independent. We suggest that this mixed selectivity may facilitate the flexible learning of difficult reinforcement learning problems.SIGNIFICANCE STATEMENTThe cerebellum receives both motor-related and reward-related information. However, it is unclear how these two signals interact at the level of cerebellar cortex and contribute to learning nonmotor skills. Here we show that in the mid-lateral cerebellum, the reward information is encoded independently from the motor information such that during reward-based learning, only the reward information carried by the Purkinje cells inform learning while the motor information remains unchanged with learning.

Funder

HHS | NIH | National Eye Institute

Keck, Zegar Family

Dana Foundation

Publisher

Society for Neuroscience

Subject

General Neuroscience

Reference34 articles.

1. A theory of cerebellar function

2. Neural Activity in the Primate Prefrontal Cortex during Associative Learning

3. Purkinje Cell Activity in Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques

4. Bastian A , Lisberger SG (2021) Cerebellum. In: Principles of neural science, sixth edition ( Kandel EK , Koester JD , Mack SH , Siegelbaum SA ), pp 908–931. New York: McGraw-Hill.

5. Cerebellar networks with the cerebral cortex and basal ganglia

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3