A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection

Author:

Sawant Yash,Kundu Jogendra Nath,Radhakrishnan Venkatesh Babu,Sridharan DevarajanORCID

Abstract

We present a biologically inspired recurrent neural network (RNN) that efficiently detects changes in natural images. The model features sparse, topographic connectivity (st-RNN), closely modeled on the circuit architecture of a “midbrain attention network.” We deployed the st-RNN in a challenging change blindness task, in which changes must be detected in a discontinuous sequence of images. Compared with a conventional RNN, the st-RNN learned 9x faster and achieved state-of-the-art performance with 15x fewer connections. An analysis of low-dimensional dynamics revealed putative circuit mechanisms, including a critical role for a global inhibitory (GI) motif, for successful change detection. The model reproduced key experimental phenomena, including midbrain neurons' sensitivity to dynamic stimuli, neural signatures of stimulus competition, as well as hallmark behavioral effects of midbrain microstimulation. Finally, the model accurately predicted human gaze fixations in a change blindness experiment, surpassing state-of-the-art saliency-based methods. The st-RNN provides a novel deep learning model for linking neural computations underlying change detection with psychophysical mechanisms.SIGNIFICANCE STATEMENTFor adaptive survival, our brains must be able to accurately and rapidly detect changing aspects of our visual world. We present a novel deep learning model, a sparse, topographic recurrent neural network (st-RNN), that mimics the neuroanatomy of an evolutionarily conserved “midbrain attention network.” The st-RNN achieved robust change detection in challenging change blindness tasks, outperforming conventional RNN architectures. The model also reproduced hallmark experimental phenomena, both neural and behavioral, reported in seminal midbrain studies. Lastly, the st-RNN outperformed state-of-the-art models at predicting human gaze fixations in a laboratory change blindness experiment. Our deep learning model may provide important clues about key mechanisms by which the brain efficiently detects changes.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

DST | Science and Engineering Research Board

CSIR Ph.D. Fellowship

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3