An Assessment of Crop-Specific Land Cover Predictions Using High-Order Markov Chains and Deep Neural Networks

Author:

Sartore LucaORCID,Boryan Claire,Dau Andrew,Willis Patrick

Abstract

High-Order Markov Chains (HOMC) are conventional models, based on transition probabilities, that are used by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) to study crop-rotation patterns over time. However, HOMCs routinely suffer from sparsity and identifiability issues because the categorical data are represented as indicator (or dummy) variables. In fact, the dimension of the parametric space increases exponentially with the order of HOMCs required for analysis. While parsimonious representations reduce the number of parameters, as has been shown in the literature, they often result in less accurate predictions. Most parsimonious models are trained on big data structures, which can be compressed and efficiently processed using alternative algorithms. Consequently, a thorough evaluation and comparison of the prediction results obtain using a new HOMC algorithm and different types of Deep Neural Networks (DNN) across a range of agricultural conditions is warranted to determine which model is most appropriate for operational crop specific land cover prediction of United States (US) agriculture. In this paper, six neural network models are applied to crop rotation data between 2011 and 2021 from six agriculturally intensive counties, which reflect the range of major crops grown and a variety of crop rotation patterns in the Midwest and southern US. The six counties include: Renville, North Dakota; Perkins, Nebraska; Hale, Texas; Livingston, Illinois; McLean, Illinois; and Shelby, Ohio. Results show the DNN models achieve higher overall prediction accuracy for all counties in 2021. The proposed DNN models allow for the ingestion of long time series data, and robustly achieve higher accuracy values than a new HOMC algorithm considered for predicting crop specific land cover in the US.

Publisher

School of Statistics, Renmin University of China

Subject

Industrial and Manufacturing Engineering

Reference62 articles.

1. Quantum complexity theory;SIAM Journal on Computing,1997

2. Oracle quantum computing;Journal of Modern Optics,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3