Efficient Bayesian High-Dimensional Classification via Random Projection with Application to Gene Expression Data

Author:

Chakraborty Abhisek

Abstract

Inspired by the impressive successes of compress sensing-based machine learning algorithms, data augmentation-based efficient Gibbs samplers for Bayesian high-dimensional classification models are developed by compressing the design matrix to a much lower dimension. Ardent care is exercised in the choice of the projection mechanism, and an adaptive voting rule is employed to reduce sensitivity to the random projection matrix. Focusing on the high-dimensional Probit regression model, we note that the naive implementation of the data augmentation-based Gibbs sampler is not robust to the presence of co-linearity in the design matrix – a setup ubiquitous in $n\lt p$ problems. We demonstrate that a simple fix based on joint updates of parameters in the latent space circumnavigates this issue. With a computationally efficient MCMC scheme in place, we introduce an ensemble classifier by creating R ($\sim 25$–50) projected copies of the design matrix, and subsequently running R classification models with the R projected design matrix in parallel. We combine the output from the R replications via an adaptive voting scheme. Our scheme is inherently parallelizable and capable of taking advantage of modern computing environments often equipped with multiple cores. The empirical success of our methodology is illustrated in elaborate simulations and gene expression data applications. We also extend our methodology to a high-dimensional logistic regression model and carry out numerical studies to showcase its efficacy.

Publisher

School of Statistics, Renmin University of China

Subject

General Medicine

Reference64 articles.

1. Database-friendly random projections: Johnson-lindenstrauss with binary coins;Journal of Computer and System Sciences,2003

2. Sufficient dimension reduction and prediction in regression;Philosophical Transactions of Royal Society A,2014

3. Bayesian analysis of binary and polychotomous response data;Journal of the American Statistical Association,1993

4. Generalized double pareto shrinkage;Statistica Sinica,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3