Predictive Mean Matching Imputation Procedure Based on Machine Learning Models for Complex Survey Data

Author:

Chen Sixia,Xu Chao

Abstract

Missing data is a common occurrence in various fields, spanning social science, education, economics, and biomedical research. Disregarding missing data in statistical analyses can introduce bias to study outcomes. To mitigate this issue, imputation methods have proven effective in reducing nonresponse bias and generating complete datasets for subsequent analysis of secondary data. The efficacy of imputation methods hinges on the assumptions of the underlying imputation model. While machine learning techniques such as regression trees, random forest, XGBoost, and deep learning have demonstrated robustness against model misspecification, their optimal performance may necessitate fine-tuning under specific conditions. Moreover, imputed values generated by these methods can sometimes deviate unnaturally, falling outside the normal range. To address these challenges, we propose a novel Predictive Mean Matching imputation (PMM) procedure that leverages popular machine learning-based methods. PMM strikes a balance between robustness and the generation of appropriate imputed values. In this paper, we present our innovative PMM approach and conduct a comparative performance analysis through Monte Carlo simulation studies, assessing its effectiveness against other established methods.

Publisher

School of Statistics, Renmin University of China

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to the GASP Special Issue;Journal of Data Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3