BIE: Binary Image Encoding for the Classification of Tabular Data

Author:

Halladay JamesORCID,Cullen DrakeORCID,Briner NathanORCID,Miller Darrin,Primeau Riley,Avila Abraham,Watson Warin,Basnet RamORCID,Doleck TenzinORCID

Abstract

There has been remarkable progress in the field of deep learning, particularly in areas such as image classification, object detection, speech recognition, and natural language processing. Convolutional Neural Networks (CNNs) have emerged as a dominant model of computation in this domain, delivering exceptional accuracy in image recognition tasks. Inspired by their success, researchers have explored the application of CNNs to tabular data. However, CNNs trained on structured tabular data often yield subpar results. Hence, there has been a demonstrated gap between the performance of deep learning models and shallow models on tabular data. To that end, Tabular-to-Image (T2I) algorithms have been introduced to convert tabular data into an unstructured image format. T2I algorithms enable the encoding of spatial information into the image, which CNN models can effectively utilize for classification. In this work, we propose two novel T2I algorithms, Binary Image Encoding (BIE) and correlated Binary Image Encoding (cBIE), which preserve complex relationships in the generated image by leveraging the native binary representation of the data. Additionally, cBIE captures more spatial information by reordering columns based on their correlation to a feature. To evaluate the performance of our algorithms, we conducted experiments using four benchmark datasets, employing ResNet-50 as the deep learning model. Our results show that the ResNet-50 models trained with images generated using BIE and cBIE consistently outperformed or matched models trained on images created using the previous State of the Art method, Image Generator for Tabular Data (IGTD).

Publisher

School of Statistics, Renmin University of China

Reference37 articles.

1. A comparative analysis of correlation approaches in finance;The Journal of Derivatives,2013

2. On over-fitting in model selection and subsequent selection bias in performance evaluation;Journal of Machine Learning Research,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3