Big Data Security on Hadoop Open Source Frame for Healthcare Data Management using One-Time-Pad Encryption Algorithm

Author:

Agunbiade Alexander

Abstract

The study elicited knowledge about the factors associated with one-time pad encryption/decryption with big data in healthcare; formulate an assembled algorithms model for one-time pad encryption; design and implement the system and evaluating the system performance with the view implementing big data security on Hadoop open-source framework for healthcare data. Literature was sourced to investigate the factors associated with healthcare security attacks and various consequences of breach of data. An assembled algorithm model was formulated using mathematical theory of one-time pad encryption and a model was designed using Universal Modelling Language (UML) and implemented using python programming language, Distributed File System of Hadoop, Yet Another Resource Negotiator called YARN; encryption time and decryption time was adopted for the performance metrics deployed for the evaluation of the developed system. The result showed that as the size of the files increased, the encryption/decryption time keeps increasing as well. While carryout the algorithm evaluation, two different values (file sizes) were used for testing on the Hadoop framework.Securing the healthcare (Ebola) big-data, it was observed that OTP encryption/decryption performed better compared to AES encryption/decryption in term of computational processing time of the healthcare big-data considered. Considering before/after downloading, it was observed that there was need for authentication for another level of security towards securing healthcare records on HDFS. The study concluded that, big data analytics on Hadoop is ideal for today’s big healthcare data and also that One Time Pad encryption algorithm is sufficient to provide needed big healthcare data security.

Publisher

European Centre for Research Training and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Big Data Analysis and Cloud Computing Technology;International Journal of Grid and High Performance Computing;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3