A Full and Detailed Proof for the Riemann Hypothesis & the Simple Inductive proof of Goldbach’s Conjecture

Author:

Shun Lam Kai

Abstract

As in my previous two papers [2] & [3] about the boundary of the prime gap still cause some misunderstanding, I here in this paper tries to clarify those detailed steps in proving such boundary of the prime gap for a contradiction. Indeed, the general idea of my designed proof is to make all of the feasible case of the Riemann Zeta function with exponents ranged from 1 to s = u + v*I becomes nonsense (where u, v are real numbers with I is imaginary equals to (-1)1/2 except that u = 0.5 with some real numbers v as the expected zeta roots. Once if we can exclude all other possibilies unless u = 0.5 with some real numbers v in the Riemann Zeta function’s exponent “s”, then the Riemann Hypothesis will be proved immediately. The truth of the hypothesis further implies that there is a need for the shift from the line x = 0 to the line x = 0.5 as all of the zeta roots lie on it. However, NOT all of the points on x = 0.5 are zeros as we may find from the model equation that has been well established in [2]. One of my application is in the quantum filtering for an elimination of noise in a quantum system but NOT used to filter human beings like the political counter-parts.In general, this author suggests that for all of the proof or disproof to any cases of hypothesis, one may need to point out those logical contradictions [14] among them. Actually, my proposition works very well for the cases in my disproof of Continuum Hypothesis [15] together with the proof in Riemann Hypothesis

Publisher

European Centre for Research Training and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3