Unsupervised Discretization of Continuous Variables in a Chicken Egg Quality Traits Dataset

Author:

Cebeci Zeynel,Yıldız Figen

Abstract

Discretization is a data pre-processing task transforming continuous variables into discrete ones in order to apply some data mining algorithms such as association rules extraction and classification trees. In this study we empirically compared the performances of equal width intervals (EWI), equal frequency intervals (EFI) and K-means clustering (KMC) methods to discretize 14 continuous variables in a chicken egg quality traits dataset. We revealed that these unsupervised discretization methods can decrease the training error rates and increase the test accuracies of the classification tree models. By comparing the training errors and test accuracies of the model applied with C5.0 classification tree algorithm we also found that EWI, EFI and KMC methods produced the more or less similar results. Among the rules used for estimating the number of intervals, the Rice rule gave the best result with EWI but not with EFI. It was also found that Freedman-Diaconis rule with EFI and Doane rule with EFI and EWI slightly performed better than the other rules.

Publisher

Turkish Science and Technology Publishing (TURSTEP)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HEOD: Human-assisted Ensemble Outlier Detection for cybersecurity;Computers & Security;2024-11

2. HSMM multi-observations for prognostics and health management;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2024-03-24

3. Breast cancer detection by using associative classifier with rule refinement method based on relevance feedback;Neural Computing and Applications;2022-06-23

4. Discretization of a Continuous Frequency Value in a Model of Socially Significant Behavior;2022 XXV International Conference on Soft Computing and Measurements (SCM);2022-05-25

5. EF_Unique: An Improved Version of Unsupervised Equal Frequency Discretization Method;Arabian Journal for Science and Engineering;2018-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3