Convolutional neural network hyperparameter optimization applied to land cover classification

Author:

Yaloveha VladyslavORCID,Podorozhniak AndriiORCID,Kuchuk HeorhiiORCID

Abstract

In recent times, machine learning algorithms have shown great performance in solving problems in different fields of study, including the analysis of remote sensing images, computer vision, natural language processing, medical issues, etc. A well-prepared input dataset can have a huge impact on the result metrics. However, a correctly selected hyperparameter combined with neural network architecture could highly increase the final metrics. Therefore, the hyperparameters optimization problem becomes a key issue in a deep learning algorithm. The process of finding a suitable hyperparameter combination could be performed manually or automatically. Manual search is based on previous research and requires enormous human efforts. However, there are many automated hyperparameter optimization methods have been successfully applied in practice. The automated hyperparameter tuning techniques are divided into two groups: black-box optimization techniques (such as Grid Search, Random Search) and multi-fidelity optimization techniques (HyperBand, BOHB). The most recent and promising among all approaches is BOHB which, which combines both Bayesian optimization and bandit-based methods, outperforms classical approaches, and can run asynchronously with given GPU resources and time budget that plays a vital role in the hyperparameter optimization process. The previous study proposed a convolutional deep learning neural network for solving land cover classification problems in the EuroSAT dataset. It was found that adding spectral indexes NDVI, NDWI, and GNDVI with RGB channels increased the result accuracy (from 64.72% to 84.19%) and F1 (from 63.89 % to 84.05%) score. However, the convolutional neural network architecture and hyperparameter combination were selected manually. The research optimizes convolutional neural network architecture and finds suitable hyperparameter combinations applied to land cover classification problems using multispectral images. The obtained results must increase result performance compared with the previous study and given budget constraints.

Publisher

National Aerospace University - Kharkiv Aviation Institute

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3