Early size estimation of web apps created using codeigniter framework by nonlinear regression models

Author:

Prykhodko SergiyORCID,Shutko IvanORCID,Prykhodko AndriiORCID

Abstract

Subject matter: Early software size estimation is one of the project managers' significant problems in evaluating app development efforts because software size is the major determinant of software project effort. Function points (FPs) and lines of code (LOC) are most commonly used as measures of size in existing software effort estimation methods and models. As is known, both these metrics have their advantages and disadvantages when used for software effort estimation. Although the FPs-based measure has the advantage over the LOC in that it does not depend on the technologies used, however, the assessment of efforts requires considering such factors (environmental factors). Considering the above factors can be ensured by appropriate models for estimating the LOC-based effort. Nowadays, many Web apps are created using PHP frameworks making the app development faster. CodeIgniter is one such powerful framework. However, there are no regression models for estimating the software size of Web apps created using the CodeIgniter framework. This requires the construction of the appropriate models. The task of this paper is to develop a nonlinear regression model for estimating the software size (in KLOC, kilo lines of code) of Web apps created using the CodeIgniter framework. Method: We apply the technique for constructing nonlinear regression models based on the multivariate normalizing transformations and prediction intervals. The result is three nonlinear regression models with three predictors: the total number of classes, the average number of methods per class, and the DIT (Depth of Inheritance Tree) average per class. To build these models for estimating the size of Web apps created using the CodeIgniter framework, we used three well-known normalizing transformations: two univariate transformations (the decimal logarithm and the Box-Cox transformation) and the Box-Cox four-variate transformation. Conclusions. The nonlinear regression model constructed by the Box-Cox four-variate transformation has better size prediction results than other regression models based on the univariate transformations.

Publisher

National Aerospace University - Kharkiv Aviation Institute

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building Nonlinear Regression Models for Estimating the Number of Clusters and Their Initial Centroids;2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT);2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3