Optimal radar cross section estimation in synthetic aperture radar with planar antenna array

Author:

Volosyuk ValeriyORCID,Zhyla SimeonORCID,Pavlikov VladimirORCID,Vlasenko DmitriyORCID,Kosharskiy VladimirORCID,Kolesnikov DenisORCID,Inkarbaeva OlgaORCID,Nezhalskaya KseniyaORCID

Abstract

The optimization problem of statistical synthesis of the method for radar cross section estimation in synthetic aperture radar with planar antenna array is solved. The desired radar cross section is given as a statistical characteristic of a spatially inhomogeneous complex scattering coefficient of the studying media. In fact it is developed new methods of inverse problems solution not with respect to the restoration of coherent images in the form of spatial distribution of complex scattering coefficient but with respect to the statistical characteristics of inhomogeneous (spatially nonstationary) random processes. The electrophysical parameters of surfaces and their statistical characteristics are considered as functions of spatial coordinates. The maximum likelihood method was chosen as the optimization method. The obtained results make it possible to determine the multichannel structure, the optimal method of surface observation and the potential spatial resolution in aerospace scatterometric radars with antenna array. Optimal operations for processing space-time signals are determined and a modified method for synthesizing antenna aperture is proposed, which in contrast to the classical algorithm for synthesizing antenna aperture that integrates the product of the received signal and the reference signal equal to a single signal additionally implements the decorrelation of signals reflected from the earth's surface, The new operation of the scattered signals decorrelation consists in their integration with the space-time inverse correlation function. To confirm the reliability of the results obtained, simulation modeling of the classical method for the synthesis of coherent images and the proposed optimal one was carried out. From the analysis of the results it flows that propose method has higher quality and smaller size of spackle noise. The results obtained in the article can be used to develop and substantiate the requirements for the tactical and technical characteristics of promising aerospace-based scatterometric radars with planar phased antenna arrays.

Publisher

National Aerospace University - Kharkiv Aviation Institute

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of the Surface Formation Algorithm by the Airborne Helicopter Radar;2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET);2022-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3