Hyper redundancy for super reliable FPGAs

Author:

Tyurin SergeyORCID

Abstract

The subject of the research presented in the article is hyper-redundant elements and FPGA devices that can be used in highly reliable digital systems (HRDS). The current work develops hyper-reliable logic elements, memory elements, and buffer elements for HRDS based on FPGAs, their simulation, and reliability assessment. Objective: to develop fault-tolerant logical elements of LUT for one, two, and three variables. Develop fault-tolerant static random access memory, D – flip-flop, and buffer element. To do a simulation in NI Multisim to validate performance and estimate complexity and power consumption. Derive formulas for assessing the reliability of the developed elements and devices and build graphs of comparison with known methods of triple modular redundancy. Methods used the introduction of redundancy in transistor level, simulation methods in Multisim, mathematical estimations of transistor number, reliability calculations. The following results were obtained: when introducing redundancy at the transistor level and using series-parallel circuits, it is necessary to at least quadruple the number of transistors. Passive-fail-safe elements and devices have been developed that can withstand one, two, and three transistor failures (errors). An assessment of their effectiveness has been conducted, showing their preference over the majority reservation. Conclusions. The synthesis and analysis of passive-fault-tolerant circuits with an ocean of redundancy, which ensures the preservation of a logical function for a given number of failures (from one to three), have been conducted. The costs are more than to maintain functional completeness in the method previously proposed by the author, but they are worth it. Despite the significantly greater redundancy compared to majority redundancy, power consumption turned out to be lower with an insignificant increase in latency. The proposed hyper-fault-tolerant FPGAs are advisable to use in critical application systems when maintenance is impossible. In the future, it is advisable to consider the issue of redundancy at the transistor level using bridge circuits.

Publisher

National Aerospace University - Kharkiv Aviation Institute

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technologies of Embedded Systems Prototyping using Reconfigurable Nodes: Technical Solutions;2022 12th International Conference on Dependable Systems, Services and Technologies (DESSERT);2022-12-09

2. Checkable FPGA-Based Components of Safety-Related Systems;Communications in Computer and Information Science;2022

3. Invariant-Based Safety Assessment of FPGA Projects: Conception and Technique;Computers;2021-10-10

4. The Fault Tolerant Černý Finite State Machine: a Concept and VHDL Models;2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2021-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3