On strange images with application to lossy image compression

Author:

Bondzulic BobanORCID,Bujakovic DimitrijeORCID,Li FangfangORCID,Lukin VladimirORCID

Abstract

Single and three-channel images are widely used in numerous applications. Due to the increasing volume of such data, they must be compressed where lossy compression offers more opportunities. Usually, it is supposed that, for a given image, a larger compression ratio leads to worse quality of the compressed image according to all quality metrics. This is true for most practical cases. However, it has been found recently that images are called “strange” for which a rate-distortion curve like dependence of the peak signal-to-noise ratio on the quality factor or quantization step, behaves non-monotonously. This might cause problems in the lossy compression of images. Thus, the basic subject of this paper are the factors that determine this phenomenon. The main among them are artificial origin of an image, possible presence of large homogeneous regions, specific behavior of image histograms. The main goal of this paper is to consider and explain the peculiarities of the lossy compression of strange images. The tasks of this paper are to provide definitions of strange images and to check whether non-monotonicity of rate-distortion curves occurs for different coders and metrics. One more task is to put ideas and methodology forward of further studies intended to detect strange images before their compression. The main result is that non-monotonous behavior can be observed for the same image for several quality metrics and coders. This means that not the coder but image properties determine the probability of an image to being strange. Moreover, both grayscale and color images can be strange, and both the natural scene and artificial images can be strange. This depends more on image properties than on image origin and number of channels. In particular, the percentage of pixels that belong to large homogeneous regions and image entropy play an important role. As conclusions, we outline possible directions of future research that, in the first order, relate to the analysis of images in large databases to establish parameters that show that a given image can be considered as strange.

Publisher

National Aerospace University - Kharkiv Aviation Institute

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simple Image Features for Remote Sensing Strange Images Identification;2023 16th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS);2023-10-25

2. Strange Images in Remote Sensing and Their Properties;Ukrainian journal of remote sensing;2023-06-29

3. On Visually Lossless JPEG Image Compression;2023 Zooming Innovation in Consumer Technologies Conference (ZINC);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3