SURFACE REPAIR OF AIRCRAFT TITANIUM ALLOY PARTS BY COLD SPRAYING TECHNOLOGY

Author:

Hu WenjieORCID,Markovych Sergii,Tan KunORCID,Shorinov OleksandrORCID,Cao Tingting

Abstract

Titanium alloys have the advantages of high specific strength, good corrosion resistance, high heat resistance, and low density, which is the main structural material of aerospace system components, including compressor blade, cartridge receiver, blisk, engine nacelle, thermal baffle and so on. At present, about three-quarters of titanium and titanium alloys in the world are used in the aerospace industry, including A350 for 14%, F18 for 15 %, B787 for 15 %, SU-57 for 18 %, J-20 for 20 %, FC-31 fighters for 25 %, F35 for about 27 %, and F22 up to 41 %, etc, so it has the reputation of "space metal". However, its low wear resistance limits the further development of titanium alloy. Besides, its high manufacturing cost, if only require the occasion of surface performance can reduce the use of the substrate, and then reduced the cost. Therefore, the study of aircraft titanium alloy is of great significance, the protection of titanium alloy includes alloying technology and coating technology. Alloying technology mainly adds other elements on its basis to improve the performance, while the most popular method is coating technology, the present, there are many coating technologies, include high-velocity oxy-fuel (HVOF), HVAF, cold spraying, laser cladding, laser micro-fusion in-situ synthesized technology, micro-arc oxidation, laser melt injection (LMI), supersonic laser deposition (SLD) and supersonic plasma spray technology, surface repair titanium alloy parts by cold spraying technology are good ways to solve those problems. Because of its low process temperature, no oxidation, only plastic deformation, and repair efficiency are high, the protective coating has high bonding strength and good impact toughness. In this paper, the types and applications of aircraft titanium alloys were reviewed, the latest research results of surface repair of titanium alloys parts by cold spraying technology were reviewed, technological parameters of the cold gas dynamic spraying technology was analyzed, including powder size of particles, morphologies, critical velocity, particle compression rate, substrate preheating effects on the particle/substrate adhesion, etc.

Publisher

National Aerospace University - Kharkiv Aviation Institute

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3