Infection-induced signals generated at the plasma membrane epigenetically regulate Wnt signaling in vitro and in vivo

Author:

Ahmed Ishfaq,Roy Badal Chandra,Rao Jakkula Laxmi Uma Maheswar,Subramaniam DharmalingamORCID,Dandawate PrasadORCID,Anant Shrikant,Sampath Venkatesh,Umar Shahid

Abstract

Wnt signaling regulates immunomodulatory functions during infection and inflammation. Employing NCCIT and HCT116 cells, having high endogenous Wnt signaling, we observed elevated levels of low-density lipoprotein receptor–related protein 5/6 (LRP5/6) and Frizzled class receptor 10 (FZD10) and increases in β-catenin, doublecortin-like kinase 1 (DCLK1), CD44 molecule (CD44), and aldehyde dehydrogenase 1 family member A1 (ALDH1A1). siRNA-induced knockdown of these receptors antagonized TOPflash reporter activity and spheroid growth in vitro and elevated Wnt-inhibitory factor 1 (WIF1) activity. Elevated mRNA and protein levels of LRP5/6 and FZD10 paralleled expression of WNT2b and WNT4 in colonic crypts at days 6 and 12 post-infection with Citrobacter rodentium (CR) and tended to decline at days 20–34. The CR mutant escV or the tankyrase inhibitor XAV939 attenuated these responses. A three-dimensional organoid assay in colonic crypts isolated from CR-infected mice revealed elevated levels of LRP5/6 and FZD10 and β-catenin co-localization with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). Co-immunoprecipitation in the membrane fraction revealed that axin associates with LRP5/6 in CR-infected crypts, and this association was correlated with increased β-catenin. Colon tumors from either CR-infected ApcPMin/+ or azoxymethane/dextran sodium sulfate (AOM/DSS)-treated mice had high LRP5/6 or FZD10 levels, and chronic Notch blockade through the γ-secretase inhibitor dibenzazepine down-regulated LRP5/6 and FZD10 expression. In CR-responsive CT-26 cells, siRNA-induced LRP5/6 or FZD10 knockdown antagonized TOPflash reporter activity. Elevated miR-153-3p levels correlated with LRP5/6 and FZD10, and miR-153-3p sequestration via a plasmid-based miR inhibitor system attenuated Wnt signaling. We conclude that infection-induced signals from the plasma membrane epigenetically regulate Wnt signaling.

Funder

National Institutes of Health

Publisher

Elsevier BV

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3