The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure

Author:

Eill Geoffrey J.,Sinha Ashis,Morawski Markus,Viapiano Mariano S.,Matthews Russell T.ORCID

Abstract

Perineuronal nets (PNNs) are conspicuous neuron-specific substructures within the extracellular matrix of the central nervous system that have generated an explosion of interest over the last decade. These reticulated structures appear to surround synapses on the cell bodies of a subset of the neurons in the central nervous system and play key roles in both developmental and adult-brain plasticity. Despite the interest in these structures and compelling demonstrations of their importance in regulating plasticity, their precise functional mechanisms remain elusive. The limited mechanistic understanding of PNNs is primarily because of an incomplete knowledge of their molecular composition and structure and a failure to identify PNN-specific targets. Thus, it has been challenging to precisely manipulate PNNs to rigorously investigate their function. Here, using mouse models and neuronal cultures, we demonstrate a role of receptor protein tyrosine phosphatase zeta (RPTPζ) in PNN structure. We found that in the absence of RPTPζ, the reticular structure of PNNs is lost and phenocopies the PNN structural abnormalities observed in tenascin-R knockout brains. Furthermore, we biochemically analyzed the contribution of RPTPζ to PNN formation and structure, which enabled us to generate a more detailed model for PNNs. We provide evidence for two distinct kinds of interactions of PNN components with the neuronal surface, one dependent on RPTPζ and the other requiring the glycosaminoglycan hyaluronan. We propose that these findings offer important insight into PNN structure and lay important groundwork for future strategies to specifically disrupt PNNs to precisely dissect their function.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Deutsche Forschungsgemeinschaft

Alzheimer Forschung Initiative

Publisher

Elsevier BV

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3