Heat Dissipation from Stationary Passenger Car Brake Discs

Author:

Topouris Stergios,Stamenković Dragan,Olphe-Galliard Michel,Popović Vladimir,Tirovic Marko

Abstract

The paper presents experimental investigation of the heat dissipation from stationary brake discs concentrated on four disc designs, a ventilated disc with radial vanes, two types of ventilated discs with curved vanes - a non-drilled and cross-drilled disc, and a solid disc. The experiments were conducted on a purpose built Thermal Spin Rig and provided repeatable and accurate temperature measurement and reliable prediction of the total, convective and radiative heat dissipation coefficients. The values obtained compare favourably with Computational Fluid Dynamics results for the ventilated disc with radial vanes and solid disc, though the differences were somewhat pronounced for the ventilated disc. The speeds of the hot air rising above the disc are under 1 m/s, hence too low to experimentally validate. However, the use of a smoke generator and suitable probe was very useful in qualitatively validating the flow patterns for all four disc designs. Convective heat transfer coefficients increase with temperature but the values are very low, typically between 3 and 5 W/m2K for the disc designs and temperature range analysed. As expected, from the four designs studied, the disc with radial vanes has highest convective heat dissipation coefficient and the solid disc the lowest, being about 30% inferior. Convective heat dissipation coefficient for the discs with curved vanes was about 20% lower than for the disc with radial vanes, with the cross drilled design showing marginal improvement at higher temperatures.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized shape for improved cooling of ventilated discs;Alexandria Engineering Journal;2023-09

2. Flow behaviour in vented brake discs with straight and airfoil-shaped radial vanes;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-12-23

3. Research progress of temperature field calculation of disc brake braking interface based on numerical analysis;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-10-05

4. CFD and experimental study of heat dissipation from an anti-coning, pin vented, inboard mounted brake disc;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-09-29

5. Study the influence of repeated braking on the thermal behavior of brake system using experimental work;AIP Conference Proceedings;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3